
NXApp, Spring 1994 (Volume 1, Issue 2). Copyright ã1994 by NeXT Computer, Inc.    All Rights
Reserved.
@implementation

MAKING MAB APPLICATIONS FROM THE COMMAND LINE
Q: I know how to make Multiple Architecture Binary (MAB) applications using
Project Builder, but how do I perform a MAB make from the command line?
A: It depends on which version of NEXTSTEP you're using.
In Release 3.1, Project Builder uses the UNIX make facility to build projects.
make is an extremely large and complex utility, but for our purposes it's fairly
simple. Ordinarily, to make a debug version of a project, you would type make
debug; to make an installed version, you'd type make install. To generate a
MAB target, you just extend the make command to override some of the default
values of symbols that your Makefile uses.
This make command overrides two NEXTSTEP makefile symbols to create a MAB
target:
make debug RC_CFLAGS=" -arch m68k -arch i386" RC_ARCHS=" m68k i386"

Here's what the symbol-value assignments above mean:
RC_CFLAGS=" -arch m68k -arch i386"

This ensures that make uses the flags on the cc commands that it generates
when compiling .c or .m source files into .o object files.
RC_ARCHS=" m68k i386"

This symbol is required so that the obj directory containing the machine code
corresponding to each source file is put in m68k_i386_debug_obj. Without this
flag, the MAB objects would be stored in an m68k_debug_obj or
i386_debug_obj directory, depending on what architecture you're running make
on. This would be both incorrect and misleading.
Alternatively, you can add the following two lines to the end of the
Makefile.postamble file in your project directory:
RC_CFLAGS = arch m68k -arch i386
RC_ARCHS = m68k i386

Then, you can run make debug to make a MAB application automatically. Note,
however, that the options you set in Project Builder still dictate the type of build
you perform thereÐeven if you make this modification to the
Makefile.postamble, if you build thin from Project Builder, you get a single
architecture ªthinº application.
In Release 3.2, the same scheme also works. However, to make things more
convenient, the TARGET_ARCHS symbols have been added, and should be
defined in much the same way as RC_ARCHS in the above example. In the 3.2
Makefile scheme, however, you needn't define RC_CFLAGS as well.

COMPILING A MAB ADAPTOR
Q: When I try to statically link an adaptor into my MAB Database Kit application
in NEXTSTEP Release 3.1 or 3.2, I get the following errors at compilation time:
ld: for architecture i386
ld: warning /NextLibrary/Adaptors/SybaseAdaptor.adaptor/SybaseAdaptor

cputype (6, architecture m68k) does not match cputype (7) for specified -arch
flag: i386 (file not loaded)

ld: for architecture m68k
ld: warning /NextLibrary/Adaptors/SybaseAdaptor.adaptor/SybaseAdaptor cputype
(7, architecture i386) does not match cputype (6) for specified -arch flag: m68k
(file not loaded)

A: The adaptors provided with Release 3.1 or 3.2 are for a single architecture type
only. For
example, to build a MAB Sybase Adaptor file, you need to do the following:
1 Get the two versions of SybaseAdaptor from

Adaptors/SybaseAdaptor.adaptor in NextLibrary. For convenience, we
rename them respectively SybaseAdaptor_m68k and
SybaseAdaptor_i386 in this example.

2 Use the UNIX command lipo(1) to create a MAB adaptor file from these two
input files:
myhost> lipo SybaseAdaptor_m68k SybaseAdaptor_i386 -create -output
~/Library/Adaptors/SybaseAdaptor_MAB

Now, you can hard link the adaptor into your MAB application.

DISTRIBUTED OBJECT CONNECTION FAILING
Q: I have a client application that's connecting to a server on another machine.
When I specify the hostname, the client successfully connects to the server.    But,
when I specify the ª*º wild card
as the hostname parameter to connectToName: onHost:fromZone:, the

connection fails and nil is returned. What causes this?
A: When you explicitly specify the hostname, the Distributed Object (DO) request
is efficiently routed using the usual TCP/IP routing mechanism to make the
connection. However, when you use a wild card search for the host, each
machine on the subnet must be queried. For this reason the wild card search
limits itself to the immediate subnet. In other words, the wild card search fails if
the two machines are not on the same subnet; the two nmserver processes are
unable to find each other. To find out more, see the documentation for
connectToName:onHost:fromZone:.
You can use two strategies to avoid using the wild card when you don't know the
hostname:
´ Hard code a machine name. Of course, it would be a friendly gesture to

allow this machine name to be changed in the Preferences panel of the
client application.

´ Register the name with NetInfo. For example, you might want to create a
new directory in the locations directory called myAppNameServer. The
myAppNameServer directory would contain a property that lists the value
of the hostname where the server is located.

(Valid for NEXTSTEP Releases 3.0, 3.1, and 3.2)

INTERNAL COMPILER ERROR
Q: When compiling the following snippet of code with the C++ compiler, I get
the error message
Internal Compiler Error 89,º and the compiler crashes.

extern "C"
{
#include <bsd/libc.h>
#include <mach/cthreads.h>
}

class Test {
struct condition aCondition;
struct mutex aMutex;

public:
void wait() { condition_wait(&aCondition, &aMutex); }

};

main()
{

Test test;
test.wait();
exit(0);

}

A: This error is caused by a name clash of the symbol wait between the definition
in the header file /NextDeveloper/Headers/g++/sys/wait.h and your member
function wait(). To work around this bug, you can rename your wait() function to
something else, such as wait_on().
 (Valid for NEXTSTEP Releases 3.1 and 3.2)

ARCHIVING AN IXSTORE OBJECT
Q: When I archive and unarchive an IXStore object, I'm able to write it to a
typed stream, but
reading it back gives me a memory protection failure with the following

backtrace.
Program generated(1): Memory access exception on address 0xe
(protection failure).
0xa025f46 in -[IXStore read:] ()
(gdb) where
#0 0xa025f46 in -[IXStore read:] ()
#1 0x500c9be in InternalReadObject ()
#2 0x500f0f8 in NXReadObject ()

A: The memory smasher occurs in InternalReadObject() (the archiving code)
when that method tries to send an awake message to the unarchived store
object, which has been freed. The store was freed because transactions weren't
enabled and so it was in a partially updated state.

To fix this problem, you can, for example, include commitTransaction in the
write: method
of your store object to finish all outstanding transactions before archiving. Note
that this is only necessary if transactions are disabled. If transactions are
enabled, the store can be archived
with incomplete transactions pending; reading it back will only drop the
uncommitted changes:
/* Make a new storage object with a brand new IXStore */
- init
{

[super init];
storage = [[IXStore alloc] init];
return self;

}

/* Archiving myself */

- read:(NXTypedStream *)stream
{

[super read:stream];
storage = NXReadObject(stream);
return self;

}

- write:(NXTypedStream *)stream
{

[super write:stream];
/* A convenient place to finish outstanding
transactions. Not needed if transactions are
enabled.
*/

[storage commitTransaction];
NXWriteObject(stream, storage);
return self;

}

Please note that this program crasher has been fixed in Release 3.2, and an
exception error is raised instead. However, you still need to follow the guideline
to properly archive an IXStore object.
(Valid for NEXTSTEP Releases 3.1 and 3.2)
__
Next Article NeXTanswer #1643      Info Panel
Previous article NeXTanswer #1637 Core Dump
Table of contents
http://www.next.com/HotNews/Journal/NXapp/Spring1994/ContentsSpring1994.html

